Thursday 2 July 2015

Blog » Computers & the Internet
 
   
 
26th June 2015
By 2020, advanced mobile technology will be commonplace around the globe, according to a new report from Ericsson.

future timeline smartphone technology 2020

The latest edition of the Ericsson Mobility Report shows that by 2020, advanced mobile technology will be commonplace in every corner of the globe — smartphone subscriptions will more than double, reaching 6.1 billion, 70% of the world's population will be using smartphones, and over 90% will be covered by mobile broadband networks.
The report – a comprehensive update on the latest mobile trends – shows that growth in mature markets comes from an increasing number of devices per individual. In developing regions, it comes from a swell of new subscribers as smartphones become more affordable; almost 80% of smartphone subscriptions added by year-end 2020 will be from Asia Pacific, the Middle East, and Africa.
With the continued rise of smartphones comes an exponential growth in data usage: smartphone data is predicted to increase ten-fold by 2020, when 80% of all mobile data traffic will come from smartphones (as opposed to basic feature phones). In North America, monthly data usage per smartphone will increase from an average of 2.4 GB today to 14 GB by 2020. It is likely that the 5G standard will be adopted by then.

future timeline mobile smartphone technology 2020

Rima Qureshi, Senior Vice President and Chief Strategy Officer of Ericsson, says: "This immense growth in advanced mobile technology and data usage, driven by a surge in mobile connectivity and smartphone uptake, will make today's big data revolution feel like the arrival of a floppy disk. We see the potential for mass-scale transformation, bringing a wealth of opportunities for telecom operators and others to capture new revenue streams. But it also requires greater focus on cost efficient delivery and openness to new business models to compete and remain effective."
An expanding range of applications and business models, coupled with falling modem costs, are key factors driving the growth of connected devices. Added to this, new use cases are emerging for both short and long range applications, leading to even stronger growth of connected devices moving forward. Ericsson's forecast, outlined in the report, points to 26 billion connected devices by 2020, confirming we are well on the way to reaching the vision of 50 billion connected devices.  
Each year until 2020, mobile video traffic will grow by a staggering 55 percent per year and will constitute around 60 percent of all mobile data traffic by the end of that period. Growth is largely driven by shifting user preferences towards video streaming services, and the increasing prevalence of video in online content including news, advertisements and social media.
When looking at data consumption in advanced mobile broadband markets, findings show a significant proportion of traffic is generated by a limited number of subscribers. These heavy data users represent 10 percent of total subscribers, but generate 55 percent of total data traffic. Video is dominant among heavy users, who typically watch around one hour of video per day, which is 20 times more than the average user.
To accompany the Mobility Report, Ericsson has created a Traffic Exploration Tool for creating customised graphs and tables, using data from the report. The information can be filtered by region, subscription, technology, traffic, and device type.

 speech bubbleComments »   


8th June 2015
The International Bar Association (IBA) today launched the eyeWitness app – a new tool for documenting and reporting human rights atrocities in a secure and verifiable way, so the information can be used as evidence in a court of law.

eyewitness mobile app technology iba

With social media increasingly the forum for communicating human rights, many online images have raised awareness of atrocities around the world but typically lack the attribution or information necessary to be used as evidence in a court of law. Now anyone with an Android-enabled smart phone – including human right defenders, journalists, and investigators – can download the eyeWitness to Atrocities app and help hold accountable the perpetrators of atrocity crimes, such as genocide, crimes against humanity, torture and war crimes.
"The eyeWitness to Atrocities app will be a transformational tool in the fight for human rights, providing a solution to the evidentiary challenges surrounding mobile phone footage," said IBA Executive Director Mark Ellis. "Until now, it has been extremely difficult to verify the authenticity of these images and to protect the safety of those brave enough to record them. As an advocate for the voiceless, the International Bar Association is dedicated to empowering activists on the ground who are witnessing these atrocities with the ability to bring criminals to justice."
The app design is based on extensive research on the rules of evidence in international, regional and national courts and tribunals. It includes several features to guarantee authenticity, facilitate verification and protect confidentiality by allowing the user to decide whether or not to be anonymous.
"Putting information and technology in the hands of citizens worldwide has a powerful role to play in advancing the rule of law," said Ian McDougall, EVP and General Counsel of LexisNexis Legal & Professional, which partnered with the IBA. "LexisNexis Legal & Professional's world class data hosting capabilities will provide the eyeWitness programme with the same technology that we use to safeguard sensitive and confidential material for our clients every day. It's all part of our company's broader commitment to advancing the rule of law around the world, as we believe every business has a role to play in building a safer, more just global society."
How the App Works
When a user records an atrocity, the app automatically collects and embeds into the video file GPS coordinates, date and time, device sensor data and surrounding objects, such as Bluetooth and Wi-Fi networks. The user has the option of adding any additional identifying information about the image. This metadata will provide information integral to verifying and contextualising the footage. The images and accompanying data are encrypted and securely stored within the app. The app also embeds a chain of custody record to verify that the footage has not been edited or digitally manipulated. The user then submits this information directly from the app to a database maintained by the eyeWitness organisation.
Once the video is transmitted, it is stored in a secure repository that functions as a virtual evidence locker safeguarding the original, encrypted footage for future investigations and legal proceedings. The submitted footage is only accessible by a group of legal experts at eyeWitness who will analyse the footage and identify the appropriate authorities, including international, regional or national courts, to pursue relevant cases.
"The IBA is proud to be spearheading the project and allocating $1 million of IBA reserves as part of its efforts to promote, protect and enforce human rights under a just rule of law," said David Rivkin, IBA President. The IBA is working in partnership with LexisNexis Legal & Professional, a part of RELX Group, which is hosting the secure repository, database and backup system to store and analyse data collected via the app. The IBA is also partnering with human rights organisations to put the app in the hands of those working in some of the world's most severe conflict zones.
"The eyeWitness app promises to revolutionise the effectiveness of ground-level human rights reporting," said Deirdre Collings, Executive Director of the SecDev Foundation, a Canadian research organisation. "We also see the app's usefulness for media activists in conflict and authoritarian environments who undertake vital but high-risk reporting. We're proud to include eyeWitness in our training programme for our partners in Syria and will be rolling it out across our projects in the CIS region and Vietnam."
Established in 1947 and headquartered in London, the IBA is the world's leading organisation of international legal practitioners, bar associations and law societies. Through its global membership of individual lawyers, law firms, bar associations and law societies, it influences the development of international law reform and shapes the future of the legal profession throughout the world.

 

 speech bubbleComments »   


5th May 2015
Researchers at the University of Texas at Austin have developed a centimetre-accurate GPS-based positioning system that could revolutionise geolocation on virtual reality headsets, cellphones and other technologies – making global positioning and orientation far more precise than what is currently available on a mobile device.

pizza delivery drone gps

The researchers' new system could allow unmanned aerial vehicles to deliver packages to a specific spot on a consumer's back porch, improve collision avoidance technologies on cars and allow virtual reality (VR) headsets to be used outdoors. This ultra-accurate GPS, coupled with a smartphone camera, could be used to quickly build a globally referenced 3-D map of one's surroundings that would greatly expand the radius of a VR game. Currently, VR does not use GPS, which limits its use to indoors and usually a two- to three-foot radius.
"Imagine games where, rather than sit in front of a monitor and play, you are in your backyard actually running around with other players," said Todd Humphreys, lead researcher and assistant professor in the Department of Aerospace Engineering and Engineering Mechanics. "To be able to do this type of outdoor, multiplayer virtual reality game, you need highly accurate position and orientation that is tied to a global reference frame."
Humphreys and his team in the Radionavigation Lab have designed a low-cost system that reduces location errors from the size of a large car to the size of a nickel – a more than 100 times increase in accuracy. Humphreys collaborated on the new technology with Professor Robert W. Heath from the Department of Electrical and Computer Engineering, along with graduate students.
Centimetre-accurate positioning systems are already used in geology, surveying and mapping – but the survey-grade antennas these systems employ are too large and costly for use in mobile devices. This breakthrough by Humphreys and his team is a powerful and sensitive software-defined GPS receiver that can extract centimetre accuracies from the inexpensive antennas found in mobile devices. Such precise measurements were not previously possible. The researchers anticipate that their software's ability to leverage low-cost antennas will reduce the overall cost of centimetre accuracy and make it economically feasible for mobile devices.

 

Humphreys and his team have spent six years building a specialised receiver, called GRID, to extract so-called carrier phase measurements from low-cost antennas. GRID currently operates outside the phone, but it will eventually run on the phone's internal processor. To further develop this technology, they recently co-founded a startup, called Radiosense. Humphreys and his team are working with Samsung to develop a snap-on accessory that will tell smartphones, tablets and virtual reality headsets their precise position and orientation.
The researchers designed their system to deliver precise position and orientation information – how one's head rotates or tilts – to less than one degree of measurement accuracy. This level of accuracy could enhance VR environments that are based on real-world settings, as well as improve other applications including visualisation and 3-D mapping. Additionally, it could make a significant difference in people's daily lives, including transportation, where centimetre-accurate GPS could allow better vehicle-to-vehicle communication technology.
"If your car knows in real time the precise position and velocity of an approaching car that is blocked from view by other traffic, your car can plan ahead to avoid a collision," Humphreys said.

An innovative new process architecture can extend Moore's Law for flash storage – bringing significant improvements in density while lowering the cost of NAND flash.

10tb solid state drive intel technology 2015 timeline

Intel Corporation – in partnership with Micron – have announced the availability of 3D NAND, the world's highest-density flash memory. Flash is the storage technology used inside the lightest laptops, fastest data centres, and nearly every cellphone, tablet and mobile device.
3D NAND works by stacking the components in vertical layers with extraordinary precision to create devices with three times higher data capacity than competing NAND technologies. This enables more storage in a smaller space, bringing significant cost savings, low power usage and higher performance to a range of mobile consumer devices, as well as the most demanding enterprise deployments.
As data cells begin to approach the size of individual atoms, traditional "planar" NAND is nearing its practical scaling limits. This poses a major challenge for the memory industry. 3D NAND is poised to make a dramatic impact by keeping flash storage aligned with Moore's Law, the exponential trend of performance gains and cost savings, driving more widespread use of flash storage in the future.

10tb solid state drive intel technology 2015 timeline

"3D NAND technology has the potential to create fundamental market shifts," said Brian Shirley, vice president of Memory Technology and Solutions at Micron Technology. "The depth of the impact that flash has had to date – from smartphones to flash-optimised supercomputing – is really just scratching the surface of what's possible."
One of the most significant aspects of this breakthrough is in the foundational memory cell itself. Intel and Micron used a floating gate cell, a universally utilised design refined through years of high-volume planar flash manufacturing. This is the first use of a floating gate cell in 3D NAND, which was a key design choice to enable greater performance, quality and reliability.
The data cells are stacked vertically in 32 layers to achieve 256Gb multilevel cell (MLC) and 384Gb triple-level cell (TLC) dies within a standard package. This can enable gum stick-sized SSDs with 3.5TB of storage and standard 2.5-inch SSDs with greater than 10TB. Because capacity is achieved by stacking cells vertically, individual cell dimensions can be considerably larger. This is expected to increase both performance and endurance and make even the TLC designs well-suited for data centre storage.

10tb solid state drive intel technology 2015 timeline

Key product features of this 3D NAND design include:
• Large Capacities – Triple the capacity of existing technology, up to 48GB of NAND per die, enabling 750GB to fit in a single fingertip-sized package.
• Reduced Cost per GB – First-generation 3D NAND is architected to achieve better cost efficiencies than planar NAND.
• Fast – High read/write bandwidth, I/O speeds and random read performance.
• Green – New sleep modes enable low-power use by cutting power to inactive NAND die (even when other dies in the same package are active), dropping power consumption significantly in standby mode.
• Smart – Innovative new features improve latency and increase endurance over previous generations, and also make system integration easier.
The 256Gb MLC version of 3D NAND is sampling with select partners today, and the 384Gb TLC design will be sampling later this spring. The fab production line has already begun initial runs, and both devices will be in full production by the fourth quarter of this year. Both companies are also developing individual lines of SSD solutions based on 3D NAND technology and expect those products to be available within the next year.

 

 speech bubbleComments »   

 
   
    
   
  
« Previous 
  
   
  
 
   
 
Blogs
AI & RoboticsBiology & MedicineBusiness & PoliticsComputers & the Internet
Energy & the EnvironmentHome & LeisureMilitary & WarNanotechnology
PhysicsSociety & DemographicsSpaceTransport & Infrastructure

 
Archive





 
 
Home   |   Latest updates   |   Timeline   |   Blog   |   Resources   |   Forum   |   Contact
 
 


future timeline twitterfuture timeline facebook groupfuture timeline youtube channel account videosfuture timeline rss feed
Latest updates   |   Timeline   |   Blog   |   Resources   |   Forum   |   Contact
© Will Fox 2008, 2009, 2010, 2011, 2012, 2

No comments:

Post a Comment